Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 218, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233418

RESUMO

Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.


Assuntos
Encéfalo , Neurônios , Humanos , Encéfalo/fisiologia , Eletrodos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Eletrodos Implantados
2.
Nature ; 626(7999): 603-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297120

RESUMO

Humans are capable of generating extraordinarily diverse articulatory movement combinations to produce meaningful speech. This ability to orchestrate specific phonetic sequences, and their syllabification and inflection over subsecond timescales allows us to produce thousands of word sounds and is a core component of language1,2. The fundamental cellular units and constructs by which we plan and produce words during speech, however, remain largely unknown. Here, using acute ultrahigh-density Neuropixels recordings capable of sampling across the cortical column in humans, we discover neurons in the language-dominant prefrontal cortex that encoded detailed information about the phonetic arrangement and composition of planned words during the production of natural speech. These neurons represented the specific order and structure of articulatory events before utterance and reflected the segmentation of phonetic sequences into distinct syllables. They also accurately predicted the phonetic, syllabic and morphological components of upcoming words and showed a temporally ordered dynamic. Collectively, we show how these mixtures of cells are broadly organized along the cortical column and how their activity patterns transition from articulation planning to production. We also demonstrate how these cells reliably track the detailed composition of consonant and vowel sounds during perception and how they distinguish processes specifically related to speaking from those related to listening. Together, these findings reveal a remarkably structured organization and encoding cascade of phonetic representations by prefrontal neurons in humans and demonstrate a cellular process that can support the production of speech.


Assuntos
Neurônios , Fonética , Córtex Pré-Frontal , Fala , Humanos , Movimento , Neurônios/fisiologia , Fala/fisiologia , Percepção da Fala/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia
3.
bioRxiv ; 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961359

RESUMO

High-density microelectrode arrays (MEAs) have opened new possibilities for systems neuroscience in human and non-human animals, but brain tissue motion relative to the array poses a challenge for downstream analyses, particularly in human recordings. We introduce DREDge (Decentralized Registration of Electrophysiology Data), a robust algorithm which is well suited for the registration of noisy, nonstationary extracellular electrophysiology recordings. In addition to estimating motion from spikes in the action potential (AP) frequency band, DREDge enables automated tracking of motion at high temporal resolution in the local field potential (LFP) frequency band. In human intraoperative recordings, which often feature fast (period <1s) motion, DREDge correction in the LFP band enabled reliable recovery of evoked potentials, and significantly reduced single-unit spike shape variability and spike sorting error. Applying DREDge to recordings made during deep probe insertions in nonhuman primates demonstrated the possibility of tracking probe motion of centimeters across several brain regions while simultaneously mapping single unit electrophysiological features. DREDge reliably delivered improved motion correction in acute mouse recordings, especially in those made with an recent ultra-high density probe. We also implemented a procedure for applying DREDge to recordings made across tens of days in chronic implantations in mice, reliably yielding stable motion tracking despite changes in neural activity across experimental sessions. Together, these advances enable automated, scalable registration of electrophysiological data across multiple species, probe types, and drift cases, providing a stable foundation for downstream scientific analyses of these rich datasets.

4.
Nat Protoc ; 18(10): 2927-2953, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697108

RESUMO

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.


Assuntos
Salas Cirúrgicas , Silício , Humanos , Eletrodos , Neurofisiologia , Potenciais de Ação/fisiologia , Eletrodos Implantados
5.
Artigo em Inglês | MEDLINE | ID: mdl-37388234

RESUMO

High-density electrophysiology probes have opened new possibilities for systems neuroscience in human and non-human animals, but probe motion poses a challenge for downstream analyses, particularly in human recordings. We improve on the state of the art for tracking this motion with four major contributions. First, we extend previous decentralized methods to use multiband information, leveraging the local field potential (LFP) in addition to spikes. Second, we show that the LFP-based approach enables registration at sub-second temporal resolution. Third, we introduce an efficient online motion tracking algorithm, enabling the method to scale up to longer and higher-resolution recordings, and possibly facilitating real-time applications. Finally, we improve the robustness of the approach by introducing a structure-aware objective and simple methods for adaptive parameter selection. Together, these advances enable fully automated scalable registration of challenging datasets from human and mouse.

6.
Nat Neurosci ; 25(2): 252-263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102333

RESUMO

Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution in animal models. In humans, however, current approaches restrict recordings to a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here we describe a new probe variant and set of techniques that enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes. We characterized a diversity of extracellular waveforms with eight separable single-unit classes, with differing firing rates, locations along the length of the electrode array, waveform spatial spread and modulation by LFP events such as inter-ictal discharges and burst suppression. Although some challenges remain in creating a turnkey recording system, high-density silicon arrays provide a path for studying human-specific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.


Assuntos
Córtex Cerebral , Neurônios , Animais , Eletrodos , Humanos , Neurônios/fisiologia , Silício
7.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661754

RESUMO

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Assuntos
Tonsila do Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Macaca , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
8.
Nat Neurosci ; 20(3): 381-382, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230840
9.
PLoS One ; 7(3): e33149, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22427973

RESUMO

The way information is represented by sequences of action potentials of spiking neurons is determined by the input each neuron receives, but also by its biophysics, and the specifics of the circuit in which it is embedded. Even the "code" of identified neurons can vary considerably from individual to individual. Here we compared the neural codes of the identified H1 neuron in the visual systems of two families of flies, blow flies and flesh flies, and explored the effect of the sensory environment that the flies were exposed to during development on the H1 code. We found that the two families differed considerably in the temporal structure of the code, its content and energetic efficiency, as well as the temporal delay of neural response. The differences in the environmental conditions during the flies' development had no significant effect. Our results may thus reflect an instance of a family-specific design of the neural code. They may also suggest that individual variability in information processing by this specific neuron, in terms of both form and content, is regulated genetically.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/citologia , Dípteros/fisiologia , Modelos Neurológicos , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/fisiologia , Estimulação Luminosa , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...